التيار الكهربائي, الجهد الكهربائي, المقاومة و قانون أوهم


أساسيات الكهرباء

عندما ننطلق في اكتشاف عالم الإلكترونيات و الكهرباء, من المهم أن ندرك مفهوم التيار الكهربائي, الجهد الكهربائي و المقاومه. تمثل هذه العناصر حجر الأساس لمعالجة و استعمال الكهرباء. قد يكون من الصعب في البداية إدراك هذه المفاهيم لأننا لا يمكننا رؤيتها. فالإنسان لا يمكنه رؤية تدفق الطاقه من خلال سلك أو الجهد لبطاريه فوق الطاولة, حتى البرق رغم أنه مرئي, إلا أنه ليس تبادل الطاقه بين الغيوم  و الأرض بل ردة فعل للهواء عند مرور الطاقة الكهربائيه فيه.

من أجل الكشف عن تنقل هذه الطاقة الكهربائيه, يجب علينا إستعمال أدوات قياس مثل

المتعدد الرقمي (Multimeter) ، راسم اشارة الذبذبات  (Oscilloscope) حتى يمكننا مشاهدة ما يحدث لطاقه في نظام معين.

لاتخف ، هذا الدرس سوف يقدم فهم مبدئي لتيار الكهربائي, الجهد الكهربائي و المقاومه و العلاقة بينهم.

1

جورج أوهم

محتوى الدرس

  • علاقة الشحنة الكهربائيه بالجهد الكهربائي, التيار الكهربائي و المقاومه
  • مفهوم الجهد الكهربائي, التيار الكهربائي و المقاومه
  • قوانين أوهم و كيفية استعمالها لفهم علم الكهرباء
  • تجربة صغيرة لشرح هذه المفاهيم

الشحنة الكهربائية

الكهرباء هو نتاج تنقل الإلكترونات, هذه الإلكترونات تكوّن الشحنة الكهربائية التي يمكن لنا أن نستغلها للقيام بعمل ما. يستخدم المصباح الكهربائي, التلفاز الهاتف و غيرهم من الأجهزة تحرك الإلكترونات حتى تعمل. كل هذه الأجهزة تعمل باستعمال نفس مصدر الطاقة أي تحرك الإلكترونات.

يمكن لنا أن نفسر المفاهيم الثلاثة التي يختص بها هذا الدرس باستعمال الإلكترونات أو بالأحرى تحرك الإلكترونات لخلق الشحنة الكهربائية

  • الجهد الكهربائي : هو الفرق في الشحنة بين نقطتين في سلك ناقل
  • التيار الكهربائي : هو نسق تدفق الشحنة عبر سلك ناقل
  • المقاومة:  هي نزعة السلك الناقل لمقاومة تدفق الشحنة

إذن عندما نتحدث عن هذه المفاهيم فإننا نتحدث في الحقيقة عن تنقل الشحنة الكهربائية و هكذا عن تصرف الإلكترونات.

تمثل الدائرة الكهربائية عقدة مغلقة تسمح بتنقل الشحنة من نقطة إلى أخرى و يمكننا أن نتحكم في تدفق الشحنة لإستعمالها عن طريق مكونات الدائرة.

الجهد الكهربائي (Voltage)

هي كمية الطاقة المتواجدة بين نقطتين في دائرة كهربائية, بلغة أخرى الجهد الكهربائي هو الفرق في الشحنة الكهربائية بين نقطتين في دائرة كهربائية. يقاس الجهد الكهربائي بالفولت (Volt)

وحدة الفولت سميت من الفيزيائي الإيطالي « Alessandro Volta » الذي اخترع أول بطارية كيميائية. نرمز لوحدة الفولت في المعادلات و الرسوم الهندسية باستعمال الحرف « V ».

عندما نفسر الجهد الكهربائي, التيار الكهربائي و المقاومة عادة ما نستعمل مقاربة ببرميل الماء. في هذه المقاربة الشحنة الكهربائية ممثلة بكمية الماء, الجهد الكهربائي يمثل بضغط الماء و التيار الكهربائي ممثل بتيار الماء.

إذن:

الماء = الشحنة الكهربائية

الضغط = الجهد الكهربائي

التيار = التيار الكهربائي

لنفترض أن برميل الماء مرتفع عن الأرض و في أسفله خرطوم.

2

الضغط في نهاية هذا الخرطوم يمثل الجهد الكهربائي, الماء في البرميل يمثل الشحنة الكهربائية. كلما تزداد كمية المياه في البرميل كلما ترتفع الشحنة كلما يرتفع الضغط في نهاية الخرطوم.

يمكن لنا أن نعتبر أن هذا البرميل عبارة عن بطارية ،حيز لتخزين الطاقة ثم إطلاقها. عندما يبدأ البرميل في الافراغ تنخفض قيمة الضغط في الخرطوم. هذا الأمر مماثل لانخفاض الجهد الكهربائي في البطارية.

التيار الكهربائي(Current)

يمكننا أن نعتبر كمية المياه المارّة في الخرطوم كالتيار الكهربائي فكلما ارتفع الضغط كلما ارتفع التيار و العكس صحيح. يمكن لنا قياس حجم المياه المتنقلة عبر الخرطوم في فترة من الزمن كما يمكننا قياس كمية الإلكترونات المتنقلة عبر الدائرة الكهربائية.

يقاس التيار الكهربائي باستعمال وحدة الأمبير أو (Amps)

1 أمبير يساوي تدفق 8^10*6.241 إلكترونات في الثانية، يرمز التيار الكهربائي في المعادلات و الرسوم الهندسية بحرف “i”

لنعتبر الآن أن لدينا برميلين كل واحد يملك خرطوم في أسفله, البرميلان يحتويان على نفس كمية الماء و لكن الخراطيم يختلفان في الحجم

3

كلا الخراطيم لهم نفس الضغط في نهايتهما و لكن عندما يبدأ الماء بالتدفق نلاحظ أن كمية المياه المتدفقة من الخرطوم الضيق أقل من كمية المياه المتدفقة من الخرطوم الواسع. بلغة أخرى التيار الكهربائي المتنقل عبر الخرطوم الضيق أقل من التيار الكهربائي المتنقل عبر الخرطوم الواسع. إذا كنا أن نريد أن تكون كمية المياه المتدفقة متساوية علينا أن نضيف مياه أكثر  في البرميل ذا الخرطوم الضيق.

4

هكذا يرتفع الجهد الكهربائي في نهاية الخرطوم الضيق و ينتج عن ذلك تدفق مياه أكثر .

من هنا نستنتج أن ارتفاع الجهد الكهربائي يولد ارتفاع في التيار الكهربائي.

يمكن لنا أن نلاحظ إذن العلاقة بين الجهد و التيار الكهربائي و لكن هنالك عامل آخر لا يجب نسيانه و هو عرض الخرطوم أي المقاومة

  • الماء = الشحنة الكهربائية
  • الضغط = الجهد الكهربائي
  • التيار = التيار الكهربائي
  • عرض الخرطوم = المقاومه

المقاومة

لنعتبر مرة أخرى برميلا الماء لهما خرطومان مختلفة الحجم

3

من الواضح أنه لا يمكننا وضع نفس كمية المياه في أنبوب ضيق و أنبوب واسع بنفس كمية الضغط, فالأنبوب الضيق يقاوم تدفق المياه أكثر من الأنبوب الواسع

6

يمكن أن نقارب هذه الفكرة في الكهرباء بسلكين لهم نفس الجهد الكهربائي و لكن مقاومة مختلفة. الدائرة الكهربائية التي تملك مقاومة أكثر تسمح لاكترونات(شحنة) أقل بالمرور ، بمعنى أن الدائرة الكهربائية التي تمتلك مقامة أكبر تسمح بمرور تيار كهربائي أقل.

حدد أوهم وحدة المقاربة 1 Ohm بالمقاومة بين نقطتين في سلك كهربائي يمر عبره 1V و يستهلك 1 Amps. نرمز لهذه الوحدة باستعمال الحرف Ω

قانون أوهم

إستطاع “جورج أوهم” أن يجمع بين الجهد الكهربائي و التيار الكهربائي و المقاومة في معادلة واحدة تسمى “قانون أوهم”:

V = I * R

V = الجهد الكهربائي

R = المقاومه

I = التيار الكهربائي

مثلا لنفترض أن لدينا دائرة كهربائية بجهد كهربائي يساوي 1V ،  تيار كهربائي بقيمة 1 Amps و مقاومة تساوي 1 Ohm إذن باستعمال قانون أوهم لدينا:

1V = 1 A * 1 Ω

لنفترض أن هذه المعادلة ترمز لبرميل الماء بخرطوم أكبر, كمية المياه في البرميل ممثلة بـ 1V و صغر الخرطوم “المقاومة” تساوي 1Ω ، باستعمال قانون أوهم يمكن لنا أن نتحصل على 1Amps.

لننظر إلى برميل الماء مع خرطوم أصغر, بما أن الخرطوم صغير تكون المقاومة مرتعة.

لنفترض أن المقاومة تساوي 2Ωو كمية الماء في البرميل مماثلة للبرميل الآخر. حسب قانون أوهم لدينا:

1V = ?A * 2Ω

و لكن ما قيمة التيار الكهربائي؟ بما أن المقاومة أكبر و الجهد هو نفسه نتحصل على قيمة 0.5Amps

1V = 0.5 Amps * 2Ω

7

إذن قيمة التيار الكهربائي أقل من البرميل صاحب المقاومة الأكبر.

بالإرتكاز على قانون أوهم يمكن لنا إستنتاج عنصر من المعادلة إذا كان لدينا العنصرين المتبقيين, سوف نثبت هذا في تجربة:

تجربة قانون أوهم

في هذه التجربة نريد أن نستعمل بطارية 9V  لتشغيل مصباح « LED » وهي مصابيح صغيرة و حساسة, لا يمكنها استيعاب كمية كبيرة من الكهرباء. في وثيقة الجهاز « Datasheet » نجد قيمة « current rating » أو قيمة التيار الكهربائي القصوى التي يمكن لها أن تتحمله.

القطع المطلوبة

  • جهاز الملتيميتر (multimeter)
  • بطارية 9V
  • مقاومة 560Ω (أو أقرب قيمة)
  • مصباح led

ملاحظة: مصابيح « led »  تقدم مفهوم إنخفاض الجهد في الدائرة الكهربائية ، يعني تغيير كمية التيار الكهربائي المتنقل فيها. لكن في هذه التجربة نريد فقط أن نحمي المصباح من التيار الكهربائي المفرط و بالتالي سنهمل الخصائص الكهربائية للمصباح و سنهتم فقط بقيمة المقاومة باستعمال قانون أوهم حتى نتأكد أن التيار الكهربائي أقل من 20mAmps أو 18mAmps  “القيمة الأفضل” حتى نضمن سلامة المصباح.

إذا قمنا بربط البطارية مباشرة مع المصباح, يصبح لدينا حسب قانون أوهم

V = I * R

I = V / R

و بما انه ليس لدينا أية مقاومة

I = 9 V/ 0 Ohm

القسمة على صفر تنتج تيارا كهربائيا لانهائي ،  الذي يؤدي إلى طلب الكمية القصوى من الكهرباء التي يمكن للبطارية أن توفرها و هو مايؤدي إلى احتراق المصباح, و بما أننا لا نريد هذه الكمية القصوى من الكهرباء تمر عبر المصباح سنحتاج إلى مقاومة و هكذا تصبح دائرتنا الكهربائية مثل الآتي

8

يمكن لنا أن نستخدم قانون أوهم لحساب قيمة المقاومة اللازمة التي تعطينا قيمة التيار الكهربائي المطلوب

V = I * R

R = V / I

R = 9V/ 0.0018 Amps

R = 500Ω

إذن نحتاج إلى مقاوم بقيمة  500Ω للحفاض على التيار الكهربائي في حدود 18mAmps حتى نضمن سلامة المصباح

9

500Ω ليست قيمة مقاومة متداولة سنستعمل مقاومة بقيمة 560Ω عوضا عنها

تمثل الصورة التالية دائرتنا بعد التجميع

10

ممتاز !! لقد قمنا باختيار مقاومة مناسبة قادرة على إبقاء التيار الكهربائي تحت القيمة القصوى التي يمكن للمصباح استعابها و لكنها قادرة على تشغيله.

مقاومة الحد من التيار الكهربائي هي تطبيق معروف لهواة الإلكترونيات, و سوف تحتاج عادة إلى قانون أوهم للتحكم في قيمة التيار الكهرباء في الدائرة الكهربائية.

دروس ذات صلة

X
تم إضافة المنتج إلى السلة بنجاح